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A method is elucidated for the solution of internal inverse heat conduction prob- 
lems that provides for the transformation of the initial mathematical model and 
the subsequent modeling of the thermal processes on analog apparatus. 

The accuracy of temperature field computations depends greatly on the confidence in the 
data about the thermophysical properties of the bodies under investigation. Experimental 
methods of determining the thermophysical properties are tedious and assume the production 
of special experimental apparatus and the fabrication of specimens of completely definite 
geometry. In fact, every experiment is transformed into a unique investigation, which 
is not, by far, always easy to duplicate. In this connection, methods of solving inverse 
heat conductivity problems (IHCP) have recently started to be used extensively for the iden- 
tification of the thermophysical characteristics of materials. A number of publications [1-4] 
are devoted to this question, in which different approaches are considered to the solution 
of interior IHCP (they are still called inverse, coefficient), and the regularity of the solu- 
tions obtained, the limits of applicability of the methods used, their realization by using 
different computer engineering facilities, etc., are studied. If we speak about the solution 
of interior IHCP on analog apparatus, then as a rule the sampling method is used here [5], 
which, although it can be automated [6], is not the most efficient method of investigation, 
in our opinion, since it assumes the presence of a large quantity of controllable elements 
in the modeling medium. A somewhat different approach, when the initial mathematical model 
is converted to a form convenient for realization by the simplest means before the applica- 
tion of electrical modeling, should be considered more promising. The method of substitution, 
which we have utilized sufficiently successfully to solve direct [7] and exterior inverse 
[8] heat conductivity problems, can he used for such a conversion. 

The application of substitution ordinarily results either in complete linearization 
of the initial mathematical model or in its simplification. Thus, the Kirchhoff substitution, 
which is used most often 
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permits reduction of the nonlinear heat conduction equation 
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and in the case of the stationary problem it permits reduction to the Laplace equation 

V2@ = 0 

The initial conditions T = f(x, y, z, 0) and boundary conditions of the kind I-IV 

(4) 
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are converted by using (i) into the expressions 
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No constraints are imposed here on the domain of assignment of the heat conductivity opera- 
tor. 

Therefore, in the case of the stationary problem (or the nonstationary with a(O) = 
const), Eq. (2) is linearized and the mathematical model becomes either completely linear 
(under boundary conditions of the kinds I and II) or the nonlinearity goes over from the 
differential equation to the boundary conditions (nonlinear boundary conditions of the kinds 
III and IV). 

The effect of applying the substitution (i) is reduced somewhat in solving the nonsta- 
tinary problem with a = f(O), since only the left side of (2) is linearized while the right 
side remains nonlinear. Nevertheless, even in this case the conversion of the mathematical 
model is meaningful, since the main modeling medium (the resistor network) need not be re- 
adjusted during the solution. The Schneider substitution results in an analogous result in 
the case of the linear dependence ~(T). 

The Goodman substitution 

T 

H = j" cv(T)dT , (6) 
0 

which reduces Eq. (2) to the form 

8H 
v[a(H)vH] -- , (7) 

i.e., results in the right side of the equation becoming linear, is a no less interesting 
effect. Examples of the combined utilization of the substitutions (1) and (6) are known 
(see, e.g., [7]). 

If the application of the mentioned substitutions was natural in the solution of the 
direct problems, then in the case of interior IHCP, when the dependences %(T), cv(T) , and a(T) 
are desired, the proposal to use these substitutions can be shown to be somewhat illogical. 
Meanwhile, if traditional representations about the modeling apparatus for the solution of 
heat conductivity problems are discarded, and they are replaced by self-adaptive apparatus, 
then the application of the substitutions mentioned turns out to be quite effective. 

Let us consider examples of using the substitutions (i) and (6) for the identification 
of %(T), cv(T), anda(T) in electrical models. 

In all cases the results of thermometry at interior points of the bodies under investi- 
gation are taken as initial data. This can be separate temperature measurements as well as 
dependences characterizing the change in temperature with time. 
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Fig. i. Determination of the heat conduction coefficient 
(a), the volume specific heat (b), and the thermal diffusi- 
vity coefficient (c). 

Determination of the Heat Conduction Coefficient by Using the Kirchhoff Substitution. 
In solving the stationary interior IHCP, after the conversion (i), Eq. (2) is transformed 
into the Laplace equation (4), which is modeled by a model of constant structure - a resis- 
tor network (R-network) -- while the boundary condition of the kind III is the expression (5), 
which can be modeled by using a nonlinear element NE and a controllable current stabilizer 
CCS (Fig. la), as is done in solving direct problems [7] by the method of nonlinear resis- 
tors. The remaining circuit elements are to control the nonlinear element NE and the same 
element included in the feedback of the functional converter amplifier FC. A signal propor- 
tional to the given temperature at a certain point of the body under investigation goes from 
the voltage divider VD to the comparison module CM through the FC. The voltage from the cor- 
responding nodal point of the passive model PM, whose role the above-mentioned R-network 
plays, is delivered to the second CM input. The mismatch signal from the CM output goes to 
the integrator I input, whose output signal is a control for the nonlinear elements. Regula- 
tion occurs until the mismatch signal becomes zero, i.e., until the voltage in the PM node 
will correspond to the temperature at this same point of the body being studied. Here self- 
adjustment of the NE and FC characteristics occurs. Since the NE and the nonlinear element 
of the FC are identical, while a current proportional to the first term in the left side of 
(5), i.e., the function T(@), is realized in the NE loop, then conversion of @(T) according 
to (i) occurs in the functional converter. The input and output signals of the functional 
converter, which are fixed during the experiment, afford the possibility of constructing the 
dependence X(T). 

Determination of the Specific Volume Capacity by Using the Kirchhoff and Goodman Substi- 
tutions. A nonstationary interior IHCP is solved, where the substitution (i) is applied to 
convert the left side of (2), and the substitution (6) is applied to convert its right side. 
Consequently Eq. (2) becomes 

OH V20 (8) 
3z 

and the left side of (8) can be modeled by a passive model (R-network), as in the preceding 
example, and a nonlinear capacitance similar to the apparatus described in [7] can be used 
for modeling the right side. This nonlinear capacitance includes the constant capacitor C 
(Fig. Ib), to which the functional converter FCI with the controllable resistor in the feed- 
back is included in parallel between the passive model PM and the adder ADD. A servo system 
analogous to the servo system of the preceding apparatus (comparison module CM, included 
between the PM and the output of the functional shaper FS in which the signal proportional 
to the temperature change at a certain point of the body being modeled is shaped, and the 
integrator I) controls the FC characteristic. A certain dependence 

P =  o - - f l =  f(e) 
( 9 )  
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is realized in the functional converter, and a current proportional to ~/~T (O -- F), flows 
through the capacitance C, and taking (9) into account, it will also be proportional to ~H/ 
~. Simultaneously, the voltage on the nodal point PM proportional to the function @ goes to 
the adder input and functional converter FC2 input, whereupon a voltage proportional to the 
function H is shaped at the ADD output, and a signal proportional to the temperature is at the 
output of FC2, realizing the known dependence T(e). Therefore, the apparatus considered [9] 
permits the construction of the function H(T), from which the dependence cv(T) is determined, 
by recording both dependences. 

Determination of the Thermal Diffusivity Coefficient by Using the Goodman Substitution. 
The nonstationary internal IHCP is solved, i.e., Eq. (2) after the conversion (6) takes the 
form (7). The right side of (7) can be realized by using constant capacitors, and the left 
side can be realized by using controllable resistive elements, i.e., (7) can be modelled by 
a capacitance-- resistor network (RC-network) if its resistors are made controllable [i0]. 
To do this, the nodal point of the passive model (RC-network) is connected to the comparison 
module ~Fig. Ic), whose second input is connected through the functional converter FC to the 
functional shaper FS, in which a signal is formed proportional to the temperature change at 
the corresponding point of the body being modeled. Conversion according to (6) is accom- 
plished in the functional converter. The mismatch signal from the comparison module output 
goes to the input of the integrator I, whose output signal controls the resistive element R 
connected between the nodal points of the passive model PM. Regulation occurs until the mis- 
match signals become zero, i.e., changes of the voltage at the passive model nodes correspond 
to temperature changes at corresponding points of the body under investigation. The resis- 
tance of the controllable resistive element, measured during regulation, permits a judgment 
about the dependence a(T) -- the thermal diffusivity coefficient and the measurable resistance 
are related in inverse proportion to the dependence. 

It should be noted that the proposed means for solving interior IHCP differ favorably 
from other methods of identifying the thermophysical properties of materials. Firstly, they 
permit utilization of results of ordinary thermometry without execution of special experi- 
ments; information obtained directly on full-scale objects and thermal models turns out to 
be sufficient. Secondly, the geometry of the objects under investigation can be arbitrary, 
while special experimental specimens assuring a uniform temperature field are ordinarily re- 
quired in other methods. Thirdly, in comparison to the method of sampling, the proposed 
method permits more economical execution of the modeling, since the time expenditures turn 
out to be so very low (in the last two examples) and the modeling facilities used contain so 
few controllable elements, especially in the first case, when the interior IHCP actually 
reduces to the exterior problem. 

As regards the regularity of the inverse problem solutions obtained on analog apparatus, 
certain considerations about this were expressed in [ii] (as a rule, the comparatively low 
accuracy of electrical models does not permit the solution to drop into the instability zone). 
If the approach is rigorous, then application of analog facilities does not deprive the exam- 
iner of the necessity to apply special measures that regularize the solution or determine the 
boundaries in which it will remain regular. These can be conditions for halting the itera- 
tion process, and constraints on the feedback gain coefficient (which exist in apparatus for 
solving inverse problems), on the Site locating the points yielding the initial information, 
on the step of the finite-difference approximation, etc. In solving interior IHCP it is 
sometimes necessary to have the presence of reference values of the desired thermophysical 
characteristics at definite temperatures (in the case of boundary conditions of the kind I) 
in order to obtain a unique solution. The accuracy of the solution depends on the quantity 
of these reference values, but since the nature of the dependence is found during the solu- 
tion, in principle one such point is sufficient to assure uniqueness. The presence of refer- 
ence values is not certain in problems with boundary conditions of the second, third, and 
fourth kinds, since there is complete definiteness with respect to the flux of the thermal 
energy on the boundaries of the object under investigation. 

In conclusion, let us present results of identifying the thermophysical properties of 
diamond polycrystals ASB, performed by S. F. Lushpenko by using the apparatus described on 
the basis of a thermophysical experiment performed by V. V. Rusanov. The mean specific 
heat of polycrystalline diamond and dependences of its heat conduction coefficient on the 
temperature were determined. The magnitude of the mean specific heat of the polycrystal 
Cp = 1330 kJ/(m 3" deg K) turned out to be of the same order as the specific heat of a 
synthetic diamond single crystal c s = 1760 kJ/(m3 " deg K). The nature of the obtained 
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Fig. 2. Results of identifying the de- 
pendence k(T) for polycrystalline dia- 
mond. 

dependence %p = f(T) on the temperature (curve 3 in Fig. 2) is in good agreement with the 
known data for natural diamond (curve I) and the single crystal (curve 2); however, the 
general level of %p is lower, which can be explained by the presence of gas pores in the 
polycrystal, and o~ a definite percentage of metal catalyst, its compounds, and other impur- 
ities whose heat conduction is considerably below the heat conduction of natural diamond 
and the synthetic single crystal. 

NOTATION 

T, temperature, ~ k, thermal conductivity, W/(m' deg); Cv, specific volume heat ca- 
pacity, J/(kg. deg); a, thermal diffusivity, m=/sec; T, time, h, sec; a, heat-transfer coef- 
ficient, W/(m 2" deg). Subscripts: s, surface; m, medium. 
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